Звезды проходят длительный этап эволюции, в течение которой они тратят ядерное горючее и прекращают свое существование. В недрах звезд происходит синтез химических элементов, причем таким способом возможно образование элементов вплоть до железа. Более тяжелые элементы образуются на конечных стадиях эволюции звезд - при взрывах так называемых сверхновых звезд. В ходе эволюции звезд вселенная обогащается тяжелыми химическими элементами, выброшенными первыми звездами при истечении вещества или при взрывах. Звезды последующих поколений, и в частности, как полагают, Солнце, образовались уже из вещества, обогащенного тяжелыми элементами. Возраст старых звездных скоплений в нашей Галактике оценивается в 10-15 млрд. лет, возраст нашего Солнца - 4,6-5 млрд. лет. Эти цифры получены в рамках теории эволюции звезд по наблюдаемым значениям их светимости и массы.
Итак, следующей важной проблемой, которую должна была решить гипотеза "Большого Взрыва", это механизм образования звезд, галактик и их скоплений, ведь вещество и излучение были распространены однородно и изотропно. И в настоящее время наблюдается однородность вещества в крупных масштабах порядка 100 Мпк, отражающая однородность вещества в далеком прошлом. Но в более мелких масштабах наблюдаются неоднородности плотности вещества - вещество сосредоточено в галактиках и их скоплениях. Для того, чтобы однородно распределенное вещество подверглось фрагментации, необходимо существование отклонений от однородности, причем только возмущения плотности с характерными размерами, превышающими критический размер (джинсовскую длину волны), способны нарастать и увеличиваться, тогда как остальные возмущения плотности постепенно затухают. Критический размер возмущений плотности вещества зависит от его температуры и средней плотности. Проблема заключается в том, чтобы согласовать гипотезу расширяющейся вселенной с гипотезой образования галактик и их скоплений, имеющих конкретные размеры и плотность вещества. Трудности на этом пути еще не преодолены. Гравитационная неустойчивость вещества должна приводить не только к образованию галактик и их скоплений, но и к образованию значительно меньших объектов - звезд. Предполагается, что звезды могут образовываться из газо-пылевых комплексов массой от 10^3 до 10^4 масс Солнца, размерами 10-100 пк (парсек) и температурой десятки кельвинов. По мере сжатия таких комплексов происходит нагрев вещества и потеря тепла за счет мощного инфракрасного излучения. Сжимаясь, газо-пылевое облако дробится на все более мелкие фрагменты - протозвезды, которые, продолжая сжиматься, дают начало звездам. Наблюдения вселенной подтверждают, что в межзвездных газо-пылевых комплексах действительно существуют компактные источники инфракрасного излучения, что, как считается, свидетельствует в пользу продолжающегося и по настоящее время процесса звездообразования. Постепенно сжимаясь, протозвезды становятся все более непрозрачными для инфракрасного излучения, поэтому они нагреваются и достигают температур, когда начинается термоядерный синтез гелия за счет водорода, т.е. рождаются звезды.
Согласно гипотезе "Большого Взрыва", первоначальное состояние вселенной характеризовалось чрезвычайно большой плотностью и температурой, недостижимыми современной физикой. В пределе в момент времени нуль, 10-20 млрд. лет назад, вся материя находилась в сингулярности - в бесконечно малой области с бесконечно большой плотностью и температурой. По неизвестной науке причине в момент времени "нуль" произошел так называемый "Большой Взрыв", в результате которого материя (частицы, античастицы и излучение) стала расширяться, заполняя все больший объем, причем состояние и свойства материи были однородными и изотропными (без выделенных областей или направлений), а плотность и температура частиц, античастиц и излучения снижались. Собственно сам "Большой Взрыв" нельзя называть взрывом в обыденном смысле этого слова, поскольку при всех известных взрывах не достигается однородного и изотропного разлета материи. Существующие теории вещества, излучения и гравитационного поля, как предполагается, применимы к материи, плотность которой ниже планковской плотности (10^93 г/см^3), а температура ниже планковской температуры (10^32 К). Согласно фридмановской модели, указанные значения плотности и температуры наступили через планковское время (10^-43 с) после начала расширения материи, т.е. от момента "Большого Взрыва". Все процессы, которые происходили в интервал времени до планковского остаются невыясненными для современной науки. Начиная с планковского времени, можно высказать предположения какие процессы и как происходили в первичной материи. При столь высоких температурах энергии фотонов было достаточно для рождения пар всех известных науке частиц и античастиц. Так, при температуре порядка 10^13 К протекали реакции рождения и уничтожения нуклонов (протонов и нейтронов) и антинуклонов, а также мезонов, электронов и позитронов, нейтрино и антинейтрино и др. По мере понижения температуры до 510^12 К прекратились реакции рождения фотонами нуклон-антинуклонных пар; нуклоны и антинуклоны аннигилировали и остался небольшой (относительная доля 10^-9) остаток избыточных нуклонов, для которых не хватило античастиц. Из этих избыточных нуклонов позднее составится все вещество Метагалактики. Причина наличия избыточных нуклонов (протонов и нейтронов) науке не известна. При температуре порядка 10^11 К плотность материи уменьшилась до плотности ядерного вещества. С этого момента времени, как считается, возможно изучение эволюции материи по твердо установленным ядерной физикой законам. При температуре примерно 210^10 К электронные нейтрино перестали активно взаимодействовать с частицами и отделились в свободный нейтринный газ, для которого вся материя вселенной стала прозрачной. Из-за расширения вселенной температура космологического нейтринного газа постепенно снизилась и в настоящее время должна составлять примерно 2 К, а плотность порядка 450 нейтрино на 1 см^3. Наука пока не в состоянии обнаружить космологические нейтрино. Если окажется, что нейтрино имеют массу покоя, то эти частицы внесут весьма большой вклад в среднюю плотность материи - на порядок большую, чем плотность непосредственно наблюдаемого вещества. Когда температура материи снизилась до (1-2)10^9 К наступил и продлился несколько секунд (1-3 с) период активного ядерного синтеза: протоны и нейтроны образовали ядра гелия, других же элементов образовалось исчезающее мало. В результате ядерного синтеза во вселенной на ядра водорода (протоны) должно приходиться 75% общей массы нуклонов, а на ядра гелия - 25%. Такое же соотношение для ядер водорода и гелия реально наблюдается, что, как считается, подтверждает гипотезу "Большого Взрыва". (Количество гелия, образовавшегося при термоядерном горении водорода в звездах за все прошедшее время, оценивается всего лишь в 2% по массе.) После стадии термоядерных реакций температура материи была настолько высока, что вещество еще примерно 1 млн. лет оставалось в состоянии плазмы, равновесной с излучением. При температуре плазмы порядка 4000 К произошла рекомбинация - протоны присоединили электроны и образовался нейтральный водород; несколько ранее образовался нейтральный гелий. Наступила эпоха разделения вещества и излучения: фотоны перестали активно взаимодействовать с веществом и стали распространяться свободно в ставшем для них прозрачном мире. Можно сказать, что в космосе вспыхнул свет, поскольку фотоны имели планковский спектр, максимум которого соответствовал температуре 4000 К, что характерно для видимого (в оптическом диапазоне) света. Вещество - первичные газообразные водород и гелий - позднее образовало звезды и галактики. Излучение же, по причине расширения Метагалактики, постепенно снизило свою температуру (длина волны увеличивалась пропорционально радиусу вселенной), и сейчас регистрируется как микроволновое фоновое (реликтовое) излучение с температурой 2,7 К, длиной волны от 60 см до 0,6 мм (максимум излучения при 1,1 мм) и плотностью 400-500 фотонов на 1 см^3. Наличие реликтового излучения считается еще одним подтверждением гипотезы "Большого Взрыва". Реликтовое излучение характеризуется высокой степенью изотропности, что подтверждает предположение о высокой изотропности первичного вещества во вселенной. Незначительные различия в интенсивности реликтового излучения, принимаемого от различных участков небесной сферы (анизотропия) несут информацию о характере первичных возмущений в веществе, которые, как полагают, в дальнейшем привели к образованию звезд, галактик и их систем.
2 Гипотеза "Большого Взрыва" и образования вселенной
(Взято с сайта: http://images.yandex.ua)
Научная истина, какой бы полной она не представлялась на данный момент, всегда является истиной относительной, в чем-то адекватной, а в чем-то ошибочной. Особенно, это должно касаться вопросов, которые нельзя решить без участия философии и богословия - глобальных вопросов мироздания".
А в заключении приведены такие соображения: "Затронув кратко историю космологических и космогонических представлений, мы видим, что эти представления не только уточнялись, но и кардинально менялись на противоположные по мере накопления новых наблюдательных данных и математического развития той или иной гипотезы, претерпевая, если можно так выразиться, зигзаги или описывая витки спирали. Почему же именно глобальные вопросы мироздания, затрагиваемые космологией и космогонией, претерпели такой драматический путь рождения, развития, умирания и замены научной концепции? Не связано ли это с тем, что в фундаментальных вопросах наука всегда была слишком слаба, и всегда таковой и останется?
Насколько научная истина объективна и насколько она адекватно описывает окружающий мир? Чтобы ответить на этот вопрос хотя бы в частном случае, мы обратимся к истории космологической мысли и посмотрим, какие зигзаги, если так можно сказать, она претерпела".
Во введении к указанной работе есть такие слова: "Принцип соответствия Бора, согласно которому новая научная теория уточняет старую, а старая теория становится частным случаем, пределом новой при некоторых условиях, так что между ними достигается определенное соответствие, этот принцип не является всеобщим и не охватывает многие закономерности развития научной мысли и поиска научной истины.
Содержание этого параграфа изложено в работе автора "Краткая история представлений о Вселенной. Зигзаги космологической мысли" на сайте "Многообразие и познание": http://zhurnal.lib.ru/s/skosarx_wjacheslaw_jurxewich/.
1 Краткая история космологической мысли
В настоящей работе мы кратко рассмотрим историю космологической мысли, изложим современную космологическую гипотезу "Большого Взрыва", гипотезу образования Солнечной системы, а также проведем небольшой сравнительный анализ этих гипотез с христианским учением о сотворении мира.
Издавна человеческая мысль пытается разрешить проблему происхождения нашего мира, возникновения и дальнейшей судьбы вселенной. Этот вопрос относится к числу вечных вопросов, и, наверное, никогда не перестанет волновать умы людей. В разные времена предлагались и различные решения указанной проблемы. Согласно одним из них, мир был сотворен и когда-то начал свое существование; согласно другим - мир вечен и не имеет начала. Известны и такие точки зрения, согласно которым вселенная периодически возникает и уничтожается.
В.Ю.Скосарь, г. Днепропетровск
СОТВОРЕНИЕ МИРА. КОСМОЛОГИЧЕСКАЯ ГИПОТЕЗА "БОЛЬШОГО ВЗРЫВА"
Размещен: 10/10/2006, изменен: 04/04/2012. 50k.
(slavutich2000@yandex.ru)
Сотворение мира. Космологическая гипотеза "Большого Взрыва"
Скосарь Вячеслав Юрьевич:
Скосарь Вячеслав Юрьевич. Сотворение мира. Космологическая гипотеза "Большого Взрыва"
Комментариев нет:
Отправить комментарий